侧边栏壁纸
博主头像
琉璃红梅 博主等级

琉璃世界,白雪红梅。

  • 累计撰写 44 篇文章
  • 累计创建 90 个标签
  • 累计收到 0 条评论

目 录CONTENT

文章目录

热电系列-单凯恩带模型

雪穗
2023-06-05 / 0 评论 / 0 点赞 / 137 阅读 / 0 字
温馨提示:
本文最后更新于34天前,若内容或图片失效,请留言反馈。 若部分素材不小心影响到您的利益,请联系我删除。

说明:
1.代入计算时要特别注意量纲
2.由于代码的编写时间不同,导致同一物理量在不同代码文件中所用的符号不一致
3.关于能谷简并度(N_\mathrm{v})的概念请参考:电子进阶——建模:态密度有效质量与能谷简并度
4.如果有问题欢迎讨论,欢迎指出错误

1.单凯恩带(Single Kane Band,SKB)模型

1.1 计算公式

E-k关系不再是抛物线型

有效质量

\frac{\hbar k^{2}}{2 m_{\mathrm{d}}^{*}}=E\left(1+\frac{E}{E_{\mathrm{g}}}\right)
m_{\mathrm{d}}^{*}=N_{\mathrm{v}}^{2/3}m_{\mathrm{b}}^{*}
m_{\mathrm{I}}^{*} = 3\left(\frac{1}{m_{1}^{*}}+\frac{1}{m_{2}^{*}}+\frac{1}{m_{3}^{*}}\right)^{-1}
m_{b}^{*} = \left(m_{1}^{*}m_{2}^{*}m_{3}^{*}\right)^{1/3}

m_{\mathrm{I}}^{*}为传输有效质量,对于各项同性材料,传输有效质量与单带有效质量m_{\mathrm{b}}^{*}相同

m_{i}^{*}(i=1,2,3)为三个主轴方向的有效质量,对于费米面为旋转椭球面,可以定义垂直有效质量m^{*}_{\perp}\left(m^{*}_{\perp} = m_{1}^{*}= m_{2}^{*}\right)与平行有效质量m_{\|}^{*}\left(m^{*}_{\|} = m_{3}^{*}\right)K为各项异性参数

m_{\mathrm{d}}^{*}=(N_\mathrm{v})^{2/3}m_\mathrm{b}^*为态密度有效质量

霍尔载流子浓度

n_{\mathrm{H}}=\frac{1}{e R_{\mathrm{H}}}=A^{-1} \frac{\left(2 m_{\mathrm{d}}^{*} k_{\mathrm{B}} T\right)^{3/2}}{3 \pi^{2} \hbar^{3}} {}^0F_{0}^{3/2}
n_{\mathrm{H}}=\frac{1}{e R_{\mathrm{H}}}=A^{-1} \frac{\left(2 m_{\mathrm{d}}^{*} k_{\mathrm{B}} T\right)^{3/2}}{3 \pi^{2} \hbar^{3}} {}^0F_{0}^{3/2}

霍尔因子

A=\frac{3 K(K+2)}{(2 K+1)^2} \frac{^0 F_{-4}^{1 / 2} \ ^0 F_{0}^{3 / 2}}{\left(^0 F_{-2}^1\right)^2}

霍尔载流子迁移率

\mu_{\mathrm{H}}=A \frac{2 \pi \hbar^{4} e C_l}{m_{\mathrm{I}}^*\left(2 m_{\mathrm{b}}^* k_{\mathrm{B}} T\right)^{3 / 2} E_{\mathrm{def}}^{2}} \frac{3\ ^0F_{-2}^1}{ ^0F_0^{3/2}}
m_{\mathrm{I}}^{*}=3\left(\frac{2}{m_{\mathrm{\perp}}^*}+\frac{1}{m_{\mathrm{\|}}^*}\right)^{-1}
m_{\mathrm{d}}^*=(N_{\mathrm{v}})^{2/3}m_{\mathrm{b}}^*
m_{\mathrm{b}}^*=(N_{\mathrm{v}})^{2/3} \left({m_{\mathrm{\perp}}^{*}}^2m_{\|}^{*}\right)^{1/3}

Seebeck系数

S=\frac{k_{\mathrm{B}}}{e}\left[\frac{ ^{1} F_{-2}^{1}}{ ^{0} F_{-2}^1}-\xi\right]
\xi = \frac{E_\mathrm{F}}{k_\mathrm{B}T}

洛伦兹常数

L=\left(\frac{k_{\mathrm{B}}}{e}\right)^{2}\left[\frac{ ^2 F_{-2}^1}{ ^0 F_{-2}^1}-\left(\frac{ ^1 F_{-2}^1}{ ^0 F_{-2}^1}\right)^2\right]

广义费米积分

{ }^{n} F_{k}^{m}=\int_{0}^{\infty}\left(-\frac{\partial f}{\partial \varepsilon}\right) \varepsilon^{n}\left(\varepsilon+\alpha \varepsilon^{2}\right)^{m}\left[(1+2 \alpha \varepsilon)^{2}+2\right]^{k / 2} \mathrm{~d} \varepsilon

费米-狄拉克分布函数:

f=\frac{1}{1+e^{(\varepsilon-\eta)}}
\alpha=\frac{k_{\mathrm{B}} T}{E_{\mathrm{g}}}

功率因子

\mathrm{PF}=\frac{2 N_{\mathrm{v}} \hbar k_{\mathrm{B}}^{2} C_l}{\pi E_{\mathrm{def}}^2} \cdot \frac{1}{m_{\mathrm{I}}^*} \cdot\left(\frac{ ^1 F_{-2}^1}{ ^0 F_{-2}^1}-\xi\right)^2\cdot\ ^0 F_{-2}^1

zT

zT=\frac{\left(\frac{ ^1 F_{-2}^1}{ ^0 F_{-2}^1}-\xi\right)^2}{\left[\frac{ ^2 F_{-2}^1}{ ^0 F_{-2}^1}-\left(\frac{ ^1 F_{-2}^1}{ ^0 F_{-2}^1}\right)^2\right]+\frac{1}{3\ ^0 F_{-2}^1 B}}

B为品质因子

B=\frac{2 T k_{\mathrm{B}}^2 \hbar C_l N_\mathrm{v}}{3 \pi m_{\mathrm{I}}^* E_{\mathrm{def}}^2 \kappa_{\mathrm{L}}}

1.2 计算代码

1.这些文件需要放在同一目录下,运行 SKB.m 即可
2.为了在导入数据时使格式一致,一些 .txt 文件中的数据进行了补0处理,实际不存在这样的数据
3.想要对自己的数据进行分析,需要进行相应改写

SKB.m

%SKB模型,单Kane带模型
%I-doping PbTe (默认)
%n = 2.9*10^18 cm^(-3) (默认)

%%运行前需要修改的参数,第26行的kl,第35、36行视不同体系切换,第50行的载流子浓度

%% 清除变量与窗口
clc,clear

%% 参数值
Kb = 1.38066*10^-23;  %J/K 1J=1V*A*s 1W = 1J/s
e = 1.60219*10^-19; %1C=1A*s
r = 0; %只考虑声学声子散射r = 0,离化杂质散射为2
h = 6.62608*10^-34; %J*s
hbar = h/(2*pi); %J*s
me = 9.10953*10^-31; %Kg
% T = 300; %温度K
Eg = @(T)(0.18+0.0004*T)*e;  %带隙eV转换为J
Nv = 4; %简并度 
K = 3.6;  %K = mp(平行)/mv(垂直)  mp = m3, mv = m1= m2   
Cl = 7.1*10^10;  %组合弹性模量pa  pa= N/m N = Kg*m*s^(-2)
Edef = 22*e;  %形变势,eV转换为J
alpha = @(T)(Kb*T)/Eg(T);  %无量纲
% epsilonr =epsilon./(Kb.*T);    %epsilonr,简约能量
% % eta = EF./(Kb.*T);
kl = 0.6;   %因为文中没有给出晶格热导率,为了计算方便采用了定值,所以热导率和zT的误差会大一些

%% 函数定义
%积分上限为无穷但是此时积分无法求得故而用有限的积分, 下限为0,上限为300
%F2即广义费米积分
F2 = @(T,k,m,n,eta)integral(@(epsilonr)epsilonr.^n.*exp(epsilonr-eta).*(((Kb.*T.*epsilonr.*2.0)./Eg(T)+1.0).^2+...
        2.0).^(k./2.0).*(epsilonr+(Kb.*T.*epsilonr.^2)./Eg(T)).^m.*1.0./(exp(epsilonr-eta)+1.0).^2,0.0,300);
A = @(eta,T)3*K*(K+2)*F2(T,-4,1/2,0,eta)*F2(T,0,3/2,0,eta)/((2*K+1)^2*F2(T,-2,1,0,eta)^2);  %霍尔因子

md = @(T)exp(log(0.25)+0.5*log(T/300))*me;  %I-dopingPbTe
%md = @(T)exp(log(0.3)+0.5*log(T/300))*me;  %La-dopingPbTe
mb = @(T)md(T)./(Nv^(2/3));  %平均有效质量  mb=(m1m2m3)^(1/3)
mv = @(T)((mb(T).^3)./K).^(1/3);  %垂直于主轴方向的有效质量
mp = @(T)K.*mv(T); %平行于主轴方向的有效质量
mI = @(T)3*(2./mv(T)+1./mp(T)).^(-1);  %惯性有效质量,电导有效质量 mI = 3(1/m1+1/m2+1/m3)^(-1)

nH = @(eta,T)A(eta,T).^(-1).*(2*md(T).*Kb.*T).^(3/2).*F2(T,0,3/2,0,eta)./(3*pi^2*hbar^3);  %霍尔载流子浓度
uH = @(eta,T)A(eta,T)*2*pi*hbar^4*e*Cl*3*F2(T,-2,1,0,eta)./(mI(T).*(2*mb(T).*Kb.*T).^(3/2).*Edef.^2.*F2(T,0,3/2,0,eta));  %霍尔载流子迁移率
R = @(eta,T)1./(nH(eta,T).*e.*uH(eta,T));  %电阻率
S = @(eta,T)(Kb/e)*(F2(T,-2,1,1,eta)/F2(T,-2,1,0,eta)- eta);   %塞贝克系数
L = @(eta,T)(Kb/e)^2*(F2(T,-2,1,2,eta)./F2(T,-2,1,0,eta)-(F2(T,-2,1,1,eta)./F2(T,-2,1,0,eta)).^2); %洛伦兹常数
PF = @(eta,T)(2*Nv*hbar*Kb^2*Cl)/(pi*Edef^2)*(F2(T,-2,1,1,eta)./F2(T,-2,1,0,eta)-eta).^2.*F2(T,-2,1,0,eta)./mI(T); %功率因子
B = @(T)(2*T*Kb^2*hbar*Cl*Nv)./(3*pi*mI(T)*Edef^2.*kl); %kl为晶格热导率
zT = @(eta,T)(F2(T,-2,1,1,eta)./F2(T,-2,1,0,eta)-eta).^2./((F2(T,-2,1,2,eta)./F2(T,-2,1,0,eta)-(F2(T,-2,1,1,eta)./F2(T,-2,1,0,eta)).^2)+1./(3*F2(T,-2,1,0,eta).*B(T)));
F3 = @(eta,T)(nH(eta,T)-2.9*10^19*10^6);  %霍尔载流子浓度为2.9*10^19 cm^(-3)
k = @(eta,T)L(eta,T).*T./R(eta,T)+kl;   %总的热导率

%% 计算数据导出
%这一部分实属冗余。。。
Tcal = 300:25:825;
Scal = zeros(length(Tcal),5);   %初始化为length(Tcal)行,5列,其实最终结果不一定有5列
ucal = zeros(length(Tcal),5);   %初始化为length(Tcal)行,5列,其实最终结果比一定有5列
Rcal = zeros(length(Tcal),5);   %初始化为length(Tcal)行,5列,其实最终结果比一定有5列
Lcal= zeros(length(Tcal),5);   %初始化为length(Tcal)行,5列,其实最终结果比一定有5列
PFcal = zeros(length(Tcal),5);   %初始化为length(Tcal)行,5列,其实最终结果不一定有5列
kcal = zeros(length(Tcal),5);   %初始化为length(Tcal)行,5列,其实最终结果不一定有5列
zTcal = zeros(length(Tcal),5);   %初始化为length(Tcal)行,5列,其实最终结果比一定有5列

fid_eta= fopen('eta.txt','wt');
fid_Scal = fopen('Scal.txt','wt');
fid_ucal= fopen('uHcal.txt','wt');
fid_Rcal = fopen('Rcal.txt','wt');
fid_Lcal= fopen('Lcal.txt','wt');
fid_PFcal = fopen('PFcal.txt','wt');
fid_kcal = fopen('kcal.txt','wt');
fid_zTcal= fopen('zTcal.txt','wt');

fprintf(fid_eta,'%s%s%s%s\n','Temperature ','(K)', '          eta', ' ');
fprintf(fid_Scal,'%s%s%s%s\n','Temperature ','(K)', '       S', ' (uV/K)');
fprintf(fid_ucal,'%s%s%s%s\n','Temperature ','(K)', '          uH', ' (cm^2/(Vs))');
fprintf(fid_Rcal,'%s%s%s%s\n','Temperature ','(K)', '          R', ' (mΩ(cm))');
fprintf(fid_Lcal,'%s%s%s%s\n','Temperature ','(K)', '          L', ' (10^-8 V^2/K^2)');
fprintf(fid_PFcal,'%s%s%s%s\n','Temperature ','(K)', '          PF', ' (uW/(cm^2 K^2))');
fprintf(fid_kcal,'%s%s%s%s\n','Temperature ','(K)', '          PF', ' (W/(m K))');
fprintf(fid_zTcal,'%s%s%s%s\n','Temperature ','(K)', '          zT', ' ');

for i=1:length(Tcal)
    fprintf(fid_eta,'    %s%s',num2str(Tcal(i)),'K');
    fprintf(fid_Scal,'    %s%s  ',num2str(Tcal(i)),'K');
    fprintf(fid_ucal,'    %s%s  ',num2str(Tcal(i)),'K');
    fprintf(fid_Rcal,'    %s%s  ',num2str(Tcal(i)),'K');
    fprintf(fid_Lcal,'    %s%s  ',num2str(Tcal(i)),'K');
    fprintf(fid_PFcal,'    %s%s  ',num2str(Tcal(i)),'K');
    fprintf(fid_kcal,'    %s%s  ',num2str(Tcal(i)),'K');
    fprintf(fid_zTcal,'    %s%s  ',num2str(Tcal(i)),'K');
  
    %求解eta
    F4 = @(eta)F3(eta,Tcal(i));
    etav = fzero(F4,0);  
  
    fprintf(fid_eta,'                    %f   ',etav);
    Scal(i) = S(etav,Tcal(i)) ;        %求Seebeck系数
    fprintf(fid_Scal,'                 %f   ',Scal(i)*10^6);
    ucal(i) = uH(etav,Tcal(i));       %求霍尔载流子迁移率
    fprintf(fid_ucal,'                 %f   ',ucal(i)*10^4);
    Rcal(i) = R(etav,Tcal(i));       %求电阻率
    fprintf(fid_Rcal,'                 %f   ',Rcal(i)*10^5);
    Lcal(i) = L(etav,Tcal(i));         %求洛伦兹常数
    fprintf(fid_Lcal,'                 %f   ',Lcal(i)*10^8);
    PFcal(i) = PF(etav,Tcal(i));     %求功率因子
    fprintf(fid_PFcal,'                 %f   ',PFcal(i)*10^4);
    kcal(i) = k(etav,Tcal(i));     %求总的电导率
    fprintf(fid_kcal,'                 %f   ',kcal(i));
    zTcal(i) = zT(etav,Tcal(i));      %求zT
    fprintf(fid_zTcal,'                 %f   ', zTcal(i));
    fprintf(fid_eta,'\n');
    fprintf(fid_Scal,'\n');
    fprintf(fid_ucal,'\n');
    fprintf(fid_Rcal,'\n');
    fprintf(fid_Lcal,'\n');
    fprintf(fid_PFcal,'\n');
    fprintf(fid_kcal,'\n');
    fprintf(fid_zTcal,'\n');
end
fclose(fid_eta);
fclose(fid_Scal);
fclose(fid_ucal);
fclose(fid_Rcal);
fclose(fid_Lcal);
fclose(fid_PFcal);
fclose(fid_kcal);
fclose(fid_zTcal);

%% 实验数据导入
data_import

%% 画图
figure('Name', 'I-doping PbTe nH = 2.9*10^19 cm^(-3)')
subplot(3,2,1)
plot(T_Sexp,-Sexp,'go',Tcal,Scal(:,1)*10^6,'r-');
xlim([275,875]);
title('Seebeck coefficient')
subplot(3,2,2)
loglog(T_uexp,uexp,'go',Tcal,ucal(:,1)*10^4);
xlim([275,625]);
title('Carrier mobility')
subplot(3,2,3)
plot(T_Rexp,Rexp,'go',Tcal,Rcal(:,1)*10^5);
title('Resistivity')
xlim([275,625]);
subplot(3,2,4)
plot(T_kexp,PFexp,'go',Tcal,PFcal(:,1)*10^4);   
title('Powder factor')
subplot(3,2,5)
plot(T_kexp,kexp,'go',Tcal,kcal(:,1));   
title('Total thermal conductivity')
xlim([275,625]);
subplot(3,2,6)
plot(T_zTexp,zTexp,'go',Tcal,zTcal(:,1));   
xlim([275,875]);
title('zT')
% figure('Name','Effective mass')
% mdI = exp(log(0.25)+0.5*log(Tcal./300));
% mdLa = exp(log(0.3)+0.5*log(Tcal./300));
% plot(Tcal,mdI,Tcal,mdLa);

data_import.m

%% 实验数据的导入,这是我从文献中提取的,每个文件的第1,3,5,7列为温度值,第2,4,6,8列为相应的实验值,具体可以点开查看(一目了然)

file_Sexp = fopen('Sexp.txt','r');   
file_uexp = fopen('uexp.txt','r');   
file_Rexp = fopen('Rexp.txt','r');   
%file_PFexp = fopen('PFexp.txt','r');   
file_kexp = fopen('kexp.txt','r');   
file_zTexp = fopen('zTexp.txt','r');   

data_Sexp  = textscan(file_Sexp , '%f%f%f%f%f%f%f%f', 'Delimiter', '',  'MultipleDelimsAsOne',1, 'headerlines',2); %以空格分隔,%'EmptyValue', 0,空值视为0%,将重复的分隔符视为一个分隔符,从第3行开始读取
data_uexp  = textscan(file_uexp , '%f%f%f%f%f%f%f%f', 'Delimiter', '',  'MultipleDelimsAsOne',1, 'headerlines',2); 
data_Rexp  = textscan(file_Rexp , '%f%f%f%f%f%f%f%f', 'Delimiter', '',  'MultipleDelimsAsOne',1, 'headerlines',2); 
%data_PFexp  = textscan(file_PFexp , '%f%f%f%f%f%f%f%f', 'Delimiter', '',  'MultipleDelimsAsOne',1, 'headerlines',2); 
data_kexp  = textscan(file_kexp , '%f%f%f%f%f%f%f%f', 'Delimiter', '',  'MultipleDelimsAsOne',1, 'headerlines',2); 
data_zTexp  = textscan(file_zTexp , '%f%f%f%f%f%f%f%f', 'Delimiter', '',  'MultipleDelimsAsOne',1, 'headerlines',2); 

fclose(file_Sexp );%关闭文件句柄
fclose(file_uexp );
fclose(file_Rexp );
%fclose(file_PFexp );
fclose(file_kexp );
fclose(file_zTexp );

matrix_Sexp = cell2mat(data_Sexp);
T_Sexp = matrix_Sexp(:,1);  %温度
Sexp = matrix_Sexp(:,2);  %塞贝克系数

matrix_uexp = cell2mat(data_uexp);
T_uexp = matrix_uexp(:,1);  %温度
uexp = matrix_uexp(:,2);  %载流子迁移率

matrix_Rexp = cell2mat(data_Rexp);
T_Rexp = matrix_Rexp(:,1);  %温度
Rexp = matrix_Rexp(:,2);  %电阻率

% matrix_PFexp = cell2mat(data_PFexp);
% T_PFexp = matrix_PFexp(:,1);  %温度
% PFexp = matrix_PFexp(:,2);  %功率因子

%自己算的
T_PFexp = matrix_Rexp(:,1);  %温度
PFexp = Sexp([1:13],:).^2./Rexp*10^(-3);  %功率因子

matrix_kexp = cell2mat(data_kexp);
T_kexp = matrix_kexp(:,1);  %温度
kexp = matrix_kexp(:,2);  %总热导率

matrix_zTexp = cell2mat(data_zTexp);
T_zTexp = matrix_zTexp(:,1);  %温度
zTexp = matrix_zTexp(:,2);  %zT

Sexp.txt

Temperature(K)	Seebeck coefficient( uv/K)            Temperature	Seebeck coefficient	                      Temperature	Seebeck coefficient	                       Temperature	Seebeck coefficient
                 PbTe:I(2.9e10^19)		                                PbTe:La(3.1e10^19)		                                  PbTe:I(1.8e10^19)		                                PbTe:La(1.8e10^19)
301.213657856632	-59.5714204941668	301.213657856632	-70.4194422281834	298.933543220039	-81.7605558592007	299.946927502969	-90.1431181082136
327.308303142092	-66.8445259749279	324.774842434766	-77.5692747346944	324.774842434766	-89.0336613399619	326.041572788429	-101.607504713481
350.616141649493	-74.6107233526898	350.616141649493	-85.9518369837071	350.616141649493	-98.0325884602256	349.34941129583	-112.455526447498
375.190710510557	-82.3769207304517	374.177326227627	-93.8413073357192	376.457440864221	-105.798785837987	375.190710510557	-122.563910336013
400.018625442354	-89.6500262112128	400.018625442354	-102.223869584732	400.018625442354	-113.564983215749	400.018625442354	-133.41193207003
425.859924657082	-97.4162235889747	427.126655010745	-110.606431833745	424.593194303419	-122.070818439012	424.593194303419	-143.027224061544
450.434493518146	-104.566056095486	450.434493518146	-117.756264340256	450.434493518146	-130.453380688025	449.421109235215	-152.026151181808
475.262408449943	-111.839161576247	475.262408449943	-125.645734692268	475.262408449943	-139.452307808289	473.99567809628	-160.408713430821
501.10370766467	-120.22172382526	                499.836977311007	-132.795567198779	499.836977311007	-147.218505186051	501.10370766467	-168.791275679834
524.411546172071	-126.262099563519	525.678276525734	-140.06867267954	                524.411546172071	-155.601067435064	525.678276525734	-175.448016289344
549.239461103868	-133.41193207003	                550.506191457531	-146.6021403148	                549.239461103868	-164.599994555327	549.239461103868	-182.597848795855
575.080760318595	-140.06867267954	                573.814029964932	-152.642516053059	575.080760318595	-172.489464907339	576.347490672258	-189.254589405365
600.922059533323	-147.834870057302	600.922059533323	-159.175983688319	599.65532917966	-180.255662285101	599.65532917966	-195.294965143624
625.74997446512	-154.984702563813	624.483244111456	-165.216359426578	625.74997446512	-187.405494791612	625.74997446512	-201.212067907633
650.324543326184	-161.025078302072	649.057812972521	-169.407640551085	649.057812972521	-195.294965143624	649.057812972521	-204.293892263888
676.165842540911	-168.174910808583	676.165842540911	-174.215286546842	673.632381833585	-200.595703036382	674.899112187248	-207.252443645892
700.993757472708	-173.598921675591	700.993757472708	-178.406567671348	698.460296765382	-206.019713903391	698.460296765382	-210.210995027897
725.568326333772	-179.63929741385	                723.034865626446	-182.597848795855	724.301595980109	-212.06008964165	                723.034865626446	-211.443724770399
751.409625548499	-186.789129920361	748.876164841173	-186.29603802336	                750.142895194836	-215.635005894905	747.862780558243	-212.06008964165
774.970810126633	-192.21314078737	                773.70407977297	-189.870954276616	773.70407977297	-216.251370766156	773.70407977297	-212.676454512901
800.81210934136	-197.637151654378	799.545378987697	-194.062235401122	800.81210934136	-217.484100508658	800.81210934136	-212.676454512901
	0	    0                                           824.119947848762	-199.486246268131		0	                    0                           823.106563565831	-212.06008964165
	0	    0                                           848.947862780558	-204.786984160889		0	                     0                          850.214593134222	-212.676454512901

uexp.txt

Temperature	Carrier moility        Temperature       Carrier moility	Temperature	Carrier moility	Temperature(K)	Carrier moility(cm^2\(Vs))					
	PbTe:I(2.9e10^19)		       PbTe:La(3.1e10^19)		PbTe:I(1.8e10^19)		PbTe:La(1.8e10^19)
300.322205348824	1099.00080518451	299.926126748076	641.80059597931	300.322205348824	1313.40211770849	299.926126748076	868.733074032619
325.670611817508	910.755787414775	324.812159806772	554.61078715753	324.812159806772	1110.86336184061	325.241102583972	712.24211912334
350.373154664806	782.814424605126	350.373154664806	486.523916676913	349.911066592837	954.811240763651	350.373154664806	608.910153864211
375.063778440295	686.712102810024	375.063778440295	431.402551010979	374.569127249307	833.109503978533	375.063778440295	537.609182191487
400.436018628573	603.054894768931	400.436018628573	392.932367574415	399.380488614844	727.70090959596	400.436018628573	476.700044323513
425.385999965843	540.502857167552	425.385999965843	352.175347866065	425.385999965843	648.728157720675	424.824981537491	424.966820106162
450.104976167553	486.523916676913	450.699379032962	322.150716392368	450.699379032962	578.325816376028	450.104976167553	378.847873713603
475.63224635571	443.13830322383	475.63224635571	296.271971178001	476.260360207109	510.058251578165	475.004960889461	341.013093454796
500.753461523452	401.029948995974	500.753461523452	269.562453061735	500.753461523452	464.075467392708	501.414750129784	308.940492266669
525.81181286223	365.268232554389	525.118348298552	249.242547604668	524.42579830752	418.177897031162	525.81181286223	282.601838854912
550.668744018029	334.127370089293	550.668744018029	230.454378311501	549.942497001586	382.526232810811	549.942497001586	258.508681520586
575.940168513006	305.641414973486	576.700747721401	211.033487464457	574.573652826807	346.549281941726	575.940168513006	237.997755531546
600.942127235335	282.601838854912	600.942127235335	200.218625734381	600.942127235335	315.307162454694	600.942127235335	220.057230668138

Rexp.txt

Temperature	Resistivity	                                            Temperature	Resistivity                     Temperature	Resistivity	                                Temperature(K)	Resistivity(mΩcm)					
                PbTe:I(2.9e10^19)		                                          PbTe:La(3.1e10^19)		                      PbTe:I(1.8e10^19)		             PbTe:La(1.8e10^19)
301.293295674149	0.199979405841651	300.570033504477	0.311273388577445	300.570033504477	0.262582271130535	300.570033504477	0.39772496445257
325.884209443002	0.23376507917216	                 325.884209443002	0.368907772494195	325.305599707265	0.320216655047285	325.884209443002	0.490138717974255
350.61977564579	0.286430981716777	350.61977564579	0.427535852685371	350.61977564579	0.368907772494195	351.343037815462	0.57659029384938
375.933951584316	0.325185136419418	375.933951584316	0.475233273857854	375.933951584316	0.431510637783078	375.933951584316	0.664035565998932
400.524865353169	0.373876253866328	400.524865353169	0.538829835421164	399.946255617432	0.500075680718522	400.524865353169	0.741543875404217
425.983693725629	0.422567371313238	425.260431555957	0.596464219337915	425.983693725629	0.572615508751673	425.983693725629	0.847869376767876
450.574607494483	0.480201755229988	450.574607494483	0.669004047371065	450.574607494483	0.645155336784824	449.851345324811	0.945251611661695
475.888783433008	0.533861354049031	475.165521263336	0.736575394032083	474.586911527598	0.722663646190109	475.165521263336	1.05654559439749
500.624349635796	0.591495737965781	499.901087466124	0.79520347422326          	499.901087466124	0.809115222065234	499.901087466124	1.17181436223099
525.21526340465	0.654098603254665	525.21526340465	0.867743302256411	525.21526340465	0.901528975586919	524.492001234977	1.28807682633892
550.529439343175	0.726638431287816	550.529439343175	0.954194878131536	549.227567437765	0.997917514206312	549.806177173503	1.40930777181898
575.265005545963	0.8041467406931	                574.541743376291	1.03170318753682         	575.265005545963	1.09529974910013	                574.541743376291	1.53948198376888
600.579181484488	0.876686568726251	599.855919314817	1.11417997831424	                599.855919314817	1.21056851693363	                600.579181484488	1.68058685473747

kexp.txt

Temperature	Thermal conductivity Temperature	Thermal conductivity Temperature	Thermal conductivityTemperature(K)	Thermal conductivity(W/(mK))					
	     PbTe:I(2.9e10^19)		PbTe:La(3.1e10^19)		          PbTe:I(1.8e10^19)		        PbTe:La(1.8e10^19)
300.275517820758	4.1192246638113	300.858831700689	4.02111201969012	299.546375470844	3.30366330955403	300.275517820758	3.32410344374594
325.795500067727	3.72064204706902	325.066357717813	3.60208926875594	325.066357717813	2.98479721616021	325.066357717813	3.04407360531675
350.586339964782	3.38337983290248	350.586339964782	3.27300310826616	350.586339964782	2.73542757901889	349.857197614869	2.73542757901889
375.52300833182	3.10539400789249	374.793865981907	3.03385353822079	375.52300833182	2.49627800897352	374.064723631994	2.53715827735734
400.313848228876	2.87646450494307	400.313848228876	2.83558423655925	399.584705878962	2.28778864021602	400.313848228876	2.35728509646852
425.104688125931	2.65571105567043	425.104688125931	2.66593112276639	425.833830475845	2.12835559351911	425.104688125931	2.19785204977161
450.041356492969	2.4778818882008	451.499641192796	2.49627800897352	450.041356492969	1.98936268101411	450.770498842883	2.06907920436257
474.832196390025	2.31844884150389	474.832196390025	2.34706502937257	475.561338739938	1.86058983560507	475.561338739938	1.93008629185757
500.352178636994	2.17945592899889	501.081320986907	2.21829218396352	501.081320986907	1.79109337935257	499.768864757063	1.8299296343172
525.288847004032	2.05885913726661	525.288847004032	2.08951933855448	526.017989353945	1.68071665471625	525.288847004032	1.73181699019603
550.079686901087	1.94030635895352	550.079686901087	1.97914261391816	550.808829251001	1.58260401059507	550.808829251001	1.64188039975162
575.599669148056	1.8299296343172	575.599669148056	1.88102996979698	575.016355268126	1.51106354092338	575.016355268126	1.56216387640316
600.536337515094	1.75021311096875	599.807195165181	1.80131344644853	600.536337515094	1.44156708467088	600.536337515094	1.51106354092338

zTexp.txt

Temperature	zT	                                                 Temperature	zT	                            Temperature	zT	                        Temperature(K)	zT						
	PbTe:I(2.9e10^19)		                                        PbTe:La(3.1e10^19)		                       PbTe:I(1.8e10^19)		                PbTe:La(1.8e10^19)
300.864055299539	0.127859833220451	300.864055299539	0.113132147088626	300.864055299539	0.220644255850955	300.864055299539	0.17793396606866
325.578252392769	0.160260742710469	326.852180077986	0.145533056578643	324.559110244594	0.270718388699164	325.578252392769	0.220644255850955
351.821162708259	0.199289110959807	351.821162708259	0.17793396606866  	350.547235023041	0.321528905853963	351.821162708259	0.27440031023212
376.535359801489	0.245681322275059	376.535359801489	0.228008098916868	375.261432116271	0.38191241899445  	377.809287486707	0.335520207679198
401.249556894718	0.296491839429859	400.230414746544	0.270718388699164	402.523484579936	0.450396159507441	400.230414746544	0.400322026659233
426.218539524991	0.350247893811024	426.218539524991	0.32521082738692  	426.218539524991	0.518143515713841	426.218539524991	0.464387461332676
450.932736618221	0.406949485418554	452.206664303439	0.378966881768085	452.206664303439	0.597673020825701	449.658808933003	0.525507358779754
475.64693371145	0.479115147464502	475.64693371145	0.435668473375615	476.920861396668	0.680148063163927	475.64693371145	0.590309177759788
501.889844026941	0.546862503670901	500.615916341723	0.493106449289737	501.889844026941	0.765568642728518	501.889844026941	0.661738455499144
526.60404112017	0.622710087249805	526.60404112017	0.557908268269771	526.60404112017	0.855407528132656	526.60404112017	0.726540274479179
552.592165898618	0.694139364989162	551.3182382134	0.619028165716849	551.3182382134	0.941564492003839	552.592165898618	0.791342093459213
577.561148528891	0.77293248579443	                575.013293158455	0.686775521923249	576.287220843673	1.02772145587502  	576.287220843673	0.848043685066744
601.001417936902	0.8517256065997	                 602.27534562212	0.751577340903283	601.001417936902	1.11756034127916  	601.001417936902	0.905481660980865
626.989542715349	0.937882570470882	625.970400567175	0.819324697109683	625.970400567175	1.20666284237671  	625.970400567175	0.952610256602708
651.958525345622	1.02403953434206	                650.684597660404	0.88044459455676  	650.684597660404	1.27882850442265  	650.684597660404	0.991638624852047
676.672722438852	1.11019649821325	                675.398794753634	0.930518727404969	675.398794753634	1.33626648033678  	675.398794753634	1.02772145587502
700.367777383907	1.18898961901852        	700.367777383907	0.973965401493856	701.386919532081	1.37529484858612  	700.367777383907	1.03876722047389
726.355902162354	1.26410081829083     	726.355902162354	1.02035761280911  	726.355902162354	1.3937044562509    	726.355902162354	1.04171275770026
753.617954626019	1.32890263727086  	751.070099255583	1.05644044383208  	751.070099255583	1.37161292705316  	752.344026940801	1.02035761280911
776.039081885856	1.37161292705316  	777.058224034031	1.0888413533221    	776.039081885856	1.31785687267199  	776.039081885856	0.995320546385004
800.753278979086	1.39664999347726  	800.753278979086	1.10651457668029  	799.479351293868	1.22139052850853  	802.027206664304	0.95923771536203
	0	              0                                826.741403757533	1.12786972157144			0                          0                                   825.467476072315	0.912845504046778
	0	             0                                  850.436458702588	1.14627932923622			0                          0                                   851.455600850762	0.876762673023804

1.3 计算结果

1.3.1 文献计算结果

1.3.2 本文计算结果

PbTe:I, 2.9e19

1.4 参考文献

[1]: Pei, Y., et al. (2012). “Low effective mass leading to high thermoelectric performance.” Energy & Environmental Science 5(7): 7963-7969.

0

评论区