说明:
1.代入计算时要特别注意量纲
2.由于代码的编写时间不同,导致同一物理量在不同代码文件中所用的符号不一致
3.关于能谷简并度(N_\mathrm{v})的概念请参考:电子进阶——建模:态密度有效质量与能谷简并度
4.如果有问题欢迎讨论,欢迎指出错误
1.单凯恩带(Single Kane Band,SKB)模型
1.1 计算公式
E-k关系不再是抛物线型
有效质量
\frac{\hbar k^{2}}{2 m_{\mathrm{d}}^{*}}=E\left(1+\frac{E}{E_{\mathrm{g}}}\right)
m_{\mathrm{d}}^{*}=N_{\mathrm{v}}^{2/3}m_{\mathrm{b}}^{*}
m_{\mathrm{I}}^{*} = 3\left(\frac{1}{m_{1}^{*}}+\frac{1}{m_{2}^{*}}+\frac{1}{m_{3}^{*}}\right)^{-1}
m_{b}^{*} = \left(m_{1}^{*}m_{2}^{*}m_{3}^{*}\right)^{1/3}
m_{\mathrm{I}}^{*}为传输有效质量,对于各项同性材料,传输有效质量与单带有效质量m_{\mathrm{b}}^{*}相同
m_{i}^{*}(i=1,2,3)为三个主轴方向的有效质量,对于费米面为旋转椭球面,可以定义垂直有效质量m^{*}_{\perp}\left(m^{*}_{\perp} = m_{1}^{*}= m_{2}^{*}\right)与平行有效质量m_{\|}^{*}\left(m^{*}_{\|} = m_{3}^{*}\right),K为各项异性参数
m_{\mathrm{d}}^{*}=(N_\mathrm{v})^{2/3}m_\mathrm{b}^*为态密度有效质量
霍尔载流子浓度
n_{\mathrm{H}}=\frac{1}{e R_{\mathrm{H}}}=A^{-1} \frac{\left(2 m_{\mathrm{d}}^{*} k_{\mathrm{B}} T\right)^{3/2}}{3 \pi^{2} \hbar^{3}} {}^0F_{0}^{3/2}
n_{\mathrm{H}}=\frac{1}{e R_{\mathrm{H}}}=A^{-1} \frac{\left(2 m_{\mathrm{d}}^{*} k_{\mathrm{B}} T\right)^{3/2}}{3 \pi^{2} \hbar^{3}} {}^0F_{0}^{3/2}
霍尔因子
A=\frac{3 K(K+2)}{(2 K+1)^2} \frac{^0 F_{-4}^{1 / 2} \ ^0 F_{0}^{3 / 2}}{\left(^0 F_{-2}^1\right)^2}
霍尔载流子迁移率
\mu_{\mathrm{H}}=A \frac{2 \pi \hbar^{4} e C_l}{m_{\mathrm{I}}^*\left(2 m_{\mathrm{b}}^* k_{\mathrm{B}} T\right)^{3 / 2} E_{\mathrm{def}}^{2}} \frac{3\ ^0F_{-2}^1}{ ^0F_0^{3/2}}
m_{\mathrm{I}}^{*}=3\left(\frac{2}{m_{\mathrm{\perp}}^*}+\frac{1}{m_{\mathrm{\|}}^*}\right)^{-1}
m_{\mathrm{d}}^*=(N_{\mathrm{v}})^{2/3}m_{\mathrm{b}}^*
m_{\mathrm{b}}^*=(N_{\mathrm{v}})^{2/3} \left({m_{\mathrm{\perp}}^{*}}^2m_{\|}^{*}\right)^{1/3}
Seebeck系数
S=\frac{k_{\mathrm{B}}}{e}\left[\frac{ ^{1} F_{-2}^{1}}{ ^{0} F_{-2}^1}-\xi\right]
\xi = \frac{E_\mathrm{F}}{k_\mathrm{B}T}
洛伦兹常数
L=\left(\frac{k_{\mathrm{B}}}{e}\right)^{2}\left[\frac{ ^2 F_{-2}^1}{ ^0 F_{-2}^1}-\left(\frac{ ^1 F_{-2}^1}{ ^0 F_{-2}^1}\right)^2\right]
广义费米积分
{ }^{n} F_{k}^{m}=\int_{0}^{\infty}\left(-\frac{\partial f}{\partial \varepsilon}\right) \varepsilon^{n}\left(\varepsilon+\alpha \varepsilon^{2}\right)^{m}\left[(1+2 \alpha \varepsilon)^{2}+2\right]^{k / 2} \mathrm{~d} \varepsilon
费米-狄拉克分布函数:
f=\frac{1}{1+e^{(\varepsilon-\eta)}}
\alpha=\frac{k_{\mathrm{B}} T}{E_{\mathrm{g}}}
功率因子
\mathrm{PF}=\frac{2 N_{\mathrm{v}} \hbar k_{\mathrm{B}}^{2} C_l}{\pi E_{\mathrm{def}}^2} \cdot \frac{1}{m_{\mathrm{I}}^*} \cdot\left(\frac{ ^1 F_{-2}^1}{ ^0 F_{-2}^1}-\xi\right)^2\cdot\ ^0 F_{-2}^1
zT值
zT=\frac{\left(\frac{ ^1 F_{-2}^1}{ ^0 F_{-2}^1}-\xi\right)^2}{\left[\frac{ ^2 F_{-2}^1}{ ^0 F_{-2}^1}-\left(\frac{ ^1 F_{-2}^1}{ ^0 F_{-2}^1}\right)^2\right]+\frac{1}{3\ ^0 F_{-2}^1 B}}
B为品质因子
B=\frac{2 T k_{\mathrm{B}}^2 \hbar C_l N_\mathrm{v}}{3 \pi m_{\mathrm{I}}^* E_{\mathrm{def}}^2 \kappa_{\mathrm{L}}}
1.2 计算代码
1.这些文件需要放在同一目录下,运行 SKB.m 即可
2.为了在导入数据时使格式一致,一些 .txt 文件中的数据进行了补0处理,实际不存在这样的数据
3.想要对自己的数据进行分析,需要进行相应改写
SKB.m
%SKB模型,单Kane带模型
%I-doping PbTe (默认)
%n = 2.9*10^18 cm^(-3) (默认)
%%运行前需要修改的参数,第26行的kl,第35、36行视不同体系切换,第50行的载流子浓度
%% 清除变量与窗口
clc,clear
%% 参数值
Kb = 1.38066*10^-23; %J/K 1J=1V*A*s 1W = 1J/s
e = 1.60219*10^-19; %1C=1A*s
r = 0; %只考虑声学声子散射r = 0,离化杂质散射为2
h = 6.62608*10^-34; %J*s
hbar = h/(2*pi); %J*s
me = 9.10953*10^-31; %Kg
% T = 300; %温度K
Eg = @(T)(0.18+0.0004*T)*e; %带隙eV转换为J
Nv = 4; %简并度
K = 3.6; %K = mp(平行)/mv(垂直) mp = m3, mv = m1= m2
Cl = 7.1*10^10; %组合弹性模量pa pa= N/m N = Kg*m*s^(-2)
Edef = 22*e; %形变势,eV转换为J
alpha = @(T)(Kb*T)/Eg(T); %无量纲
% epsilonr =epsilon./(Kb.*T); %epsilonr,简约能量
% % eta = EF./(Kb.*T);
kl = 0.6; %因为文中没有给出晶格热导率,为了计算方便采用了定值,所以热导率和zT的误差会大一些
%% 函数定义
%积分上限为无穷但是此时积分无法求得故而用有限的积分, 下限为0,上限为300
%F2即广义费米积分
F2 = @(T,k,m,n,eta)integral(@(epsilonr)epsilonr.^n.*exp(epsilonr-eta).*(((Kb.*T.*epsilonr.*2.0)./Eg(T)+1.0).^2+...
2.0).^(k./2.0).*(epsilonr+(Kb.*T.*epsilonr.^2)./Eg(T)).^m.*1.0./(exp(epsilonr-eta)+1.0).^2,0.0,300);
A = @(eta,T)3*K*(K+2)*F2(T,-4,1/2,0,eta)*F2(T,0,3/2,0,eta)/((2*K+1)^2*F2(T,-2,1,0,eta)^2); %霍尔因子
md = @(T)exp(log(0.25)+0.5*log(T/300))*me; %I-dopingPbTe
%md = @(T)exp(log(0.3)+0.5*log(T/300))*me; %La-dopingPbTe
mb = @(T)md(T)./(Nv^(2/3)); %平均有效质量 mb=(m1m2m3)^(1/3)
mv = @(T)((mb(T).^3)./K).^(1/3); %垂直于主轴方向的有效质量
mp = @(T)K.*mv(T); %平行于主轴方向的有效质量
mI = @(T)3*(2./mv(T)+1./mp(T)).^(-1); %惯性有效质量,电导有效质量 mI = 3(1/m1+1/m2+1/m3)^(-1)
nH = @(eta,T)A(eta,T).^(-1).*(2*md(T).*Kb.*T).^(3/2).*F2(T,0,3/2,0,eta)./(3*pi^2*hbar^3); %霍尔载流子浓度
uH = @(eta,T)A(eta,T)*2*pi*hbar^4*e*Cl*3*F2(T,-2,1,0,eta)./(mI(T).*(2*mb(T).*Kb.*T).^(3/2).*Edef.^2.*F2(T,0,3/2,0,eta)); %霍尔载流子迁移率
R = @(eta,T)1./(nH(eta,T).*e.*uH(eta,T)); %电阻率
S = @(eta,T)(Kb/e)*(F2(T,-2,1,1,eta)/F2(T,-2,1,0,eta)- eta); %塞贝克系数
L = @(eta,T)(Kb/e)^2*(F2(T,-2,1,2,eta)./F2(T,-2,1,0,eta)-(F2(T,-2,1,1,eta)./F2(T,-2,1,0,eta)).^2); %洛伦兹常数
PF = @(eta,T)(2*Nv*hbar*Kb^2*Cl)/(pi*Edef^2)*(F2(T,-2,1,1,eta)./F2(T,-2,1,0,eta)-eta).^2.*F2(T,-2,1,0,eta)./mI(T); %功率因子
B = @(T)(2*T*Kb^2*hbar*Cl*Nv)./(3*pi*mI(T)*Edef^2.*kl); %kl为晶格热导率
zT = @(eta,T)(F2(T,-2,1,1,eta)./F2(T,-2,1,0,eta)-eta).^2./((F2(T,-2,1,2,eta)./F2(T,-2,1,0,eta)-(F2(T,-2,1,1,eta)./F2(T,-2,1,0,eta)).^2)+1./(3*F2(T,-2,1,0,eta).*B(T)));
F3 = @(eta,T)(nH(eta,T)-2.9*10^19*10^6); %霍尔载流子浓度为2.9*10^19 cm^(-3)
k = @(eta,T)L(eta,T).*T./R(eta,T)+kl; %总的热导率
%% 计算数据导出
%这一部分实属冗余。。。
Tcal = 300:25:825;
Scal = zeros(length(Tcal),5); %初始化为length(Tcal)行,5列,其实最终结果不一定有5列
ucal = zeros(length(Tcal),5); %初始化为length(Tcal)行,5列,其实最终结果比一定有5列
Rcal = zeros(length(Tcal),5); %初始化为length(Tcal)行,5列,其实最终结果比一定有5列
Lcal= zeros(length(Tcal),5); %初始化为length(Tcal)行,5列,其实最终结果比一定有5列
PFcal = zeros(length(Tcal),5); %初始化为length(Tcal)行,5列,其实最终结果不一定有5列
kcal = zeros(length(Tcal),5); %初始化为length(Tcal)行,5列,其实最终结果不一定有5列
zTcal = zeros(length(Tcal),5); %初始化为length(Tcal)行,5列,其实最终结果比一定有5列
fid_eta= fopen('eta.txt','wt');
fid_Scal = fopen('Scal.txt','wt');
fid_ucal= fopen('uHcal.txt','wt');
fid_Rcal = fopen('Rcal.txt','wt');
fid_Lcal= fopen('Lcal.txt','wt');
fid_PFcal = fopen('PFcal.txt','wt');
fid_kcal = fopen('kcal.txt','wt');
fid_zTcal= fopen('zTcal.txt','wt');
fprintf(fid_eta,'%s%s%s%s\n','Temperature ','(K)', ' eta', ' ');
fprintf(fid_Scal,'%s%s%s%s\n','Temperature ','(K)', ' S', ' (uV/K)');
fprintf(fid_ucal,'%s%s%s%s\n','Temperature ','(K)', ' uH', ' (cm^2/(Vs))');
fprintf(fid_Rcal,'%s%s%s%s\n','Temperature ','(K)', ' R', ' (mΩ(cm))');
fprintf(fid_Lcal,'%s%s%s%s\n','Temperature ','(K)', ' L', ' (10^-8 V^2/K^2)');
fprintf(fid_PFcal,'%s%s%s%s\n','Temperature ','(K)', ' PF', ' (uW/(cm^2 K^2))');
fprintf(fid_kcal,'%s%s%s%s\n','Temperature ','(K)', ' PF', ' (W/(m K))');
fprintf(fid_zTcal,'%s%s%s%s\n','Temperature ','(K)', ' zT', ' ');
for i=1:length(Tcal)
fprintf(fid_eta,' %s%s',num2str(Tcal(i)),'K');
fprintf(fid_Scal,' %s%s ',num2str(Tcal(i)),'K');
fprintf(fid_ucal,' %s%s ',num2str(Tcal(i)),'K');
fprintf(fid_Rcal,' %s%s ',num2str(Tcal(i)),'K');
fprintf(fid_Lcal,' %s%s ',num2str(Tcal(i)),'K');
fprintf(fid_PFcal,' %s%s ',num2str(Tcal(i)),'K');
fprintf(fid_kcal,' %s%s ',num2str(Tcal(i)),'K');
fprintf(fid_zTcal,' %s%s ',num2str(Tcal(i)),'K');
%求解eta
F4 = @(eta)F3(eta,Tcal(i));
etav = fzero(F4,0);
fprintf(fid_eta,' %f ',etav);
Scal(i) = S(etav,Tcal(i)) ; %求Seebeck系数
fprintf(fid_Scal,' %f ',Scal(i)*10^6);
ucal(i) = uH(etav,Tcal(i)); %求霍尔载流子迁移率
fprintf(fid_ucal,' %f ',ucal(i)*10^4);
Rcal(i) = R(etav,Tcal(i)); %求电阻率
fprintf(fid_Rcal,' %f ',Rcal(i)*10^5);
Lcal(i) = L(etav,Tcal(i)); %求洛伦兹常数
fprintf(fid_Lcal,' %f ',Lcal(i)*10^8);
PFcal(i) = PF(etav,Tcal(i)); %求功率因子
fprintf(fid_PFcal,' %f ',PFcal(i)*10^4);
kcal(i) = k(etav,Tcal(i)); %求总的电导率
fprintf(fid_kcal,' %f ',kcal(i));
zTcal(i) = zT(etav,Tcal(i)); %求zT
fprintf(fid_zTcal,' %f ', zTcal(i));
fprintf(fid_eta,'\n');
fprintf(fid_Scal,'\n');
fprintf(fid_ucal,'\n');
fprintf(fid_Rcal,'\n');
fprintf(fid_Lcal,'\n');
fprintf(fid_PFcal,'\n');
fprintf(fid_kcal,'\n');
fprintf(fid_zTcal,'\n');
end
fclose(fid_eta);
fclose(fid_Scal);
fclose(fid_ucal);
fclose(fid_Rcal);
fclose(fid_Lcal);
fclose(fid_PFcal);
fclose(fid_kcal);
fclose(fid_zTcal);
%% 实验数据导入
data_import
%% 画图
figure('Name', 'I-doping PbTe nH = 2.9*10^19 cm^(-3)')
subplot(3,2,1)
plot(T_Sexp,-Sexp,'go',Tcal,Scal(:,1)*10^6,'r-');
xlim([275,875]);
title('Seebeck coefficient')
subplot(3,2,2)
loglog(T_uexp,uexp,'go',Tcal,ucal(:,1)*10^4);
xlim([275,625]);
title('Carrier mobility')
subplot(3,2,3)
plot(T_Rexp,Rexp,'go',Tcal,Rcal(:,1)*10^5);
title('Resistivity')
xlim([275,625]);
subplot(3,2,4)
plot(T_kexp,PFexp,'go',Tcal,PFcal(:,1)*10^4);
title('Powder factor')
subplot(3,2,5)
plot(T_kexp,kexp,'go',Tcal,kcal(:,1));
title('Total thermal conductivity')
xlim([275,625]);
subplot(3,2,6)
plot(T_zTexp,zTexp,'go',Tcal,zTcal(:,1));
xlim([275,875]);
title('zT')
% figure('Name','Effective mass')
% mdI = exp(log(0.25)+0.5*log(Tcal./300));
% mdLa = exp(log(0.3)+0.5*log(Tcal./300));
% plot(Tcal,mdI,Tcal,mdLa);
data_import.m
%% 实验数据的导入,这是我从文献中提取的,每个文件的第1,3,5,7列为温度值,第2,4,6,8列为相应的实验值,具体可以点开查看(一目了然)
file_Sexp = fopen('Sexp.txt','r');
file_uexp = fopen('uexp.txt','r');
file_Rexp = fopen('Rexp.txt','r');
%file_PFexp = fopen('PFexp.txt','r');
file_kexp = fopen('kexp.txt','r');
file_zTexp = fopen('zTexp.txt','r');
data_Sexp = textscan(file_Sexp , '%f%f%f%f%f%f%f%f', 'Delimiter', '', 'MultipleDelimsAsOne',1, 'headerlines',2); %以空格分隔,%'EmptyValue', 0,空值视为0%,将重复的分隔符视为一个分隔符,从第3行开始读取
data_uexp = textscan(file_uexp , '%f%f%f%f%f%f%f%f', 'Delimiter', '', 'MultipleDelimsAsOne',1, 'headerlines',2);
data_Rexp = textscan(file_Rexp , '%f%f%f%f%f%f%f%f', 'Delimiter', '', 'MultipleDelimsAsOne',1, 'headerlines',2);
%data_PFexp = textscan(file_PFexp , '%f%f%f%f%f%f%f%f', 'Delimiter', '', 'MultipleDelimsAsOne',1, 'headerlines',2);
data_kexp = textscan(file_kexp , '%f%f%f%f%f%f%f%f', 'Delimiter', '', 'MultipleDelimsAsOne',1, 'headerlines',2);
data_zTexp = textscan(file_zTexp , '%f%f%f%f%f%f%f%f', 'Delimiter', '', 'MultipleDelimsAsOne',1, 'headerlines',2);
fclose(file_Sexp );%关闭文件句柄
fclose(file_uexp );
fclose(file_Rexp );
%fclose(file_PFexp );
fclose(file_kexp );
fclose(file_zTexp );
matrix_Sexp = cell2mat(data_Sexp);
T_Sexp = matrix_Sexp(:,1); %温度
Sexp = matrix_Sexp(:,2); %塞贝克系数
matrix_uexp = cell2mat(data_uexp);
T_uexp = matrix_uexp(:,1); %温度
uexp = matrix_uexp(:,2); %载流子迁移率
matrix_Rexp = cell2mat(data_Rexp);
T_Rexp = matrix_Rexp(:,1); %温度
Rexp = matrix_Rexp(:,2); %电阻率
% matrix_PFexp = cell2mat(data_PFexp);
% T_PFexp = matrix_PFexp(:,1); %温度
% PFexp = matrix_PFexp(:,2); %功率因子
%自己算的
T_PFexp = matrix_Rexp(:,1); %温度
PFexp = Sexp([1:13],:).^2./Rexp*10^(-3); %功率因子
matrix_kexp = cell2mat(data_kexp);
T_kexp = matrix_kexp(:,1); %温度
kexp = matrix_kexp(:,2); %总热导率
matrix_zTexp = cell2mat(data_zTexp);
T_zTexp = matrix_zTexp(:,1); %温度
zTexp = matrix_zTexp(:,2); %zT
Sexp.txt
Temperature(K) Seebeck coefficient( uv/K) Temperature Seebeck coefficient Temperature Seebeck coefficient Temperature Seebeck coefficient
PbTe:I(2.9e10^19) PbTe:La(3.1e10^19) PbTe:I(1.8e10^19) PbTe:La(1.8e10^19)
301.213657856632 -59.5714204941668 301.213657856632 -70.4194422281834 298.933543220039 -81.7605558592007 299.946927502969 -90.1431181082136
327.308303142092 -66.8445259749279 324.774842434766 -77.5692747346944 324.774842434766 -89.0336613399619 326.041572788429 -101.607504713481
350.616141649493 -74.6107233526898 350.616141649493 -85.9518369837071 350.616141649493 -98.0325884602256 349.34941129583 -112.455526447498
375.190710510557 -82.3769207304517 374.177326227627 -93.8413073357192 376.457440864221 -105.798785837987 375.190710510557 -122.563910336013
400.018625442354 -89.6500262112128 400.018625442354 -102.223869584732 400.018625442354 -113.564983215749 400.018625442354 -133.41193207003
425.859924657082 -97.4162235889747 427.126655010745 -110.606431833745 424.593194303419 -122.070818439012 424.593194303419 -143.027224061544
450.434493518146 -104.566056095486 450.434493518146 -117.756264340256 450.434493518146 -130.453380688025 449.421109235215 -152.026151181808
475.262408449943 -111.839161576247 475.262408449943 -125.645734692268 475.262408449943 -139.452307808289 473.99567809628 -160.408713430821
501.10370766467 -120.22172382526 499.836977311007 -132.795567198779 499.836977311007 -147.218505186051 501.10370766467 -168.791275679834
524.411546172071 -126.262099563519 525.678276525734 -140.06867267954 524.411546172071 -155.601067435064 525.678276525734 -175.448016289344
549.239461103868 -133.41193207003 550.506191457531 -146.6021403148 549.239461103868 -164.599994555327 549.239461103868 -182.597848795855
575.080760318595 -140.06867267954 573.814029964932 -152.642516053059 575.080760318595 -172.489464907339 576.347490672258 -189.254589405365
600.922059533323 -147.834870057302 600.922059533323 -159.175983688319 599.65532917966 -180.255662285101 599.65532917966 -195.294965143624
625.74997446512 -154.984702563813 624.483244111456 -165.216359426578 625.74997446512 -187.405494791612 625.74997446512 -201.212067907633
650.324543326184 -161.025078302072 649.057812972521 -169.407640551085 649.057812972521 -195.294965143624 649.057812972521 -204.293892263888
676.165842540911 -168.174910808583 676.165842540911 -174.215286546842 673.632381833585 -200.595703036382 674.899112187248 -207.252443645892
700.993757472708 -173.598921675591 700.993757472708 -178.406567671348 698.460296765382 -206.019713903391 698.460296765382 -210.210995027897
725.568326333772 -179.63929741385 723.034865626446 -182.597848795855 724.301595980109 -212.06008964165 723.034865626446 -211.443724770399
751.409625548499 -186.789129920361 748.876164841173 -186.29603802336 750.142895194836 -215.635005894905 747.862780558243 -212.06008964165
774.970810126633 -192.21314078737 773.70407977297 -189.870954276616 773.70407977297 -216.251370766156 773.70407977297 -212.676454512901
800.81210934136 -197.637151654378 799.545378987697 -194.062235401122 800.81210934136 -217.484100508658 800.81210934136 -212.676454512901
0 0 824.119947848762 -199.486246268131 0 0 823.106563565831 -212.06008964165
0 0 848.947862780558 -204.786984160889 0 0 850.214593134222 -212.676454512901
uexp.txt
Temperature Carrier moility Temperature Carrier moility Temperature Carrier moility Temperature(K) Carrier moility(cm^2\(Vs))
PbTe:I(2.9e10^19) PbTe:La(3.1e10^19) PbTe:I(1.8e10^19) PbTe:La(1.8e10^19)
300.322205348824 1099.00080518451 299.926126748076 641.80059597931 300.322205348824 1313.40211770849 299.926126748076 868.733074032619
325.670611817508 910.755787414775 324.812159806772 554.61078715753 324.812159806772 1110.86336184061 325.241102583972 712.24211912334
350.373154664806 782.814424605126 350.373154664806 486.523916676913 349.911066592837 954.811240763651 350.373154664806 608.910153864211
375.063778440295 686.712102810024 375.063778440295 431.402551010979 374.569127249307 833.109503978533 375.063778440295 537.609182191487
400.436018628573 603.054894768931 400.436018628573 392.932367574415 399.380488614844 727.70090959596 400.436018628573 476.700044323513
425.385999965843 540.502857167552 425.385999965843 352.175347866065 425.385999965843 648.728157720675 424.824981537491 424.966820106162
450.104976167553 486.523916676913 450.699379032962 322.150716392368 450.699379032962 578.325816376028 450.104976167553 378.847873713603
475.63224635571 443.13830322383 475.63224635571 296.271971178001 476.260360207109 510.058251578165 475.004960889461 341.013093454796
500.753461523452 401.029948995974 500.753461523452 269.562453061735 500.753461523452 464.075467392708 501.414750129784 308.940492266669
525.81181286223 365.268232554389 525.118348298552 249.242547604668 524.42579830752 418.177897031162 525.81181286223 282.601838854912
550.668744018029 334.127370089293 550.668744018029 230.454378311501 549.942497001586 382.526232810811 549.942497001586 258.508681520586
575.940168513006 305.641414973486 576.700747721401 211.033487464457 574.573652826807 346.549281941726 575.940168513006 237.997755531546
600.942127235335 282.601838854912 600.942127235335 200.218625734381 600.942127235335 315.307162454694 600.942127235335 220.057230668138
Rexp.txt
Temperature Resistivity Temperature Resistivity Temperature Resistivity Temperature(K) Resistivity(mΩcm)
PbTe:I(2.9e10^19) PbTe:La(3.1e10^19) PbTe:I(1.8e10^19) PbTe:La(1.8e10^19)
301.293295674149 0.199979405841651 300.570033504477 0.311273388577445 300.570033504477 0.262582271130535 300.570033504477 0.39772496445257
325.884209443002 0.23376507917216 325.884209443002 0.368907772494195 325.305599707265 0.320216655047285 325.884209443002 0.490138717974255
350.61977564579 0.286430981716777 350.61977564579 0.427535852685371 350.61977564579 0.368907772494195 351.343037815462 0.57659029384938
375.933951584316 0.325185136419418 375.933951584316 0.475233273857854 375.933951584316 0.431510637783078 375.933951584316 0.664035565998932
400.524865353169 0.373876253866328 400.524865353169 0.538829835421164 399.946255617432 0.500075680718522 400.524865353169 0.741543875404217
425.983693725629 0.422567371313238 425.260431555957 0.596464219337915 425.983693725629 0.572615508751673 425.983693725629 0.847869376767876
450.574607494483 0.480201755229988 450.574607494483 0.669004047371065 450.574607494483 0.645155336784824 449.851345324811 0.945251611661695
475.888783433008 0.533861354049031 475.165521263336 0.736575394032083 474.586911527598 0.722663646190109 475.165521263336 1.05654559439749
500.624349635796 0.591495737965781 499.901087466124 0.79520347422326 499.901087466124 0.809115222065234 499.901087466124 1.17181436223099
525.21526340465 0.654098603254665 525.21526340465 0.867743302256411 525.21526340465 0.901528975586919 524.492001234977 1.28807682633892
550.529439343175 0.726638431287816 550.529439343175 0.954194878131536 549.227567437765 0.997917514206312 549.806177173503 1.40930777181898
575.265005545963 0.8041467406931 574.541743376291 1.03170318753682 575.265005545963 1.09529974910013 574.541743376291 1.53948198376888
600.579181484488 0.876686568726251 599.855919314817 1.11417997831424 599.855919314817 1.21056851693363 600.579181484488 1.68058685473747
kexp.txt
Temperature Thermal conductivity Temperature Thermal conductivity Temperature Thermal conductivityTemperature(K) Thermal conductivity(W/(mK))
PbTe:I(2.9e10^19) PbTe:La(3.1e10^19) PbTe:I(1.8e10^19) PbTe:La(1.8e10^19)
300.275517820758 4.1192246638113 300.858831700689 4.02111201969012 299.546375470844 3.30366330955403 300.275517820758 3.32410344374594
325.795500067727 3.72064204706902 325.066357717813 3.60208926875594 325.066357717813 2.98479721616021 325.066357717813 3.04407360531675
350.586339964782 3.38337983290248 350.586339964782 3.27300310826616 350.586339964782 2.73542757901889 349.857197614869 2.73542757901889
375.52300833182 3.10539400789249 374.793865981907 3.03385353822079 375.52300833182 2.49627800897352 374.064723631994 2.53715827735734
400.313848228876 2.87646450494307 400.313848228876 2.83558423655925 399.584705878962 2.28778864021602 400.313848228876 2.35728509646852
425.104688125931 2.65571105567043 425.104688125931 2.66593112276639 425.833830475845 2.12835559351911 425.104688125931 2.19785204977161
450.041356492969 2.4778818882008 451.499641192796 2.49627800897352 450.041356492969 1.98936268101411 450.770498842883 2.06907920436257
474.832196390025 2.31844884150389 474.832196390025 2.34706502937257 475.561338739938 1.86058983560507 475.561338739938 1.93008629185757
500.352178636994 2.17945592899889 501.081320986907 2.21829218396352 501.081320986907 1.79109337935257 499.768864757063 1.8299296343172
525.288847004032 2.05885913726661 525.288847004032 2.08951933855448 526.017989353945 1.68071665471625 525.288847004032 1.73181699019603
550.079686901087 1.94030635895352 550.079686901087 1.97914261391816 550.808829251001 1.58260401059507 550.808829251001 1.64188039975162
575.599669148056 1.8299296343172 575.599669148056 1.88102996979698 575.016355268126 1.51106354092338 575.016355268126 1.56216387640316
600.536337515094 1.75021311096875 599.807195165181 1.80131344644853 600.536337515094 1.44156708467088 600.536337515094 1.51106354092338
zTexp.txt
Temperature zT Temperature zT Temperature zT Temperature(K) zT
PbTe:I(2.9e10^19) PbTe:La(3.1e10^19) PbTe:I(1.8e10^19) PbTe:La(1.8e10^19)
300.864055299539 0.127859833220451 300.864055299539 0.113132147088626 300.864055299539 0.220644255850955 300.864055299539 0.17793396606866
325.578252392769 0.160260742710469 326.852180077986 0.145533056578643 324.559110244594 0.270718388699164 325.578252392769 0.220644255850955
351.821162708259 0.199289110959807 351.821162708259 0.17793396606866 350.547235023041 0.321528905853963 351.821162708259 0.27440031023212
376.535359801489 0.245681322275059 376.535359801489 0.228008098916868 375.261432116271 0.38191241899445 377.809287486707 0.335520207679198
401.249556894718 0.296491839429859 400.230414746544 0.270718388699164 402.523484579936 0.450396159507441 400.230414746544 0.400322026659233
426.218539524991 0.350247893811024 426.218539524991 0.32521082738692 426.218539524991 0.518143515713841 426.218539524991 0.464387461332676
450.932736618221 0.406949485418554 452.206664303439 0.378966881768085 452.206664303439 0.597673020825701 449.658808933003 0.525507358779754
475.64693371145 0.479115147464502 475.64693371145 0.435668473375615 476.920861396668 0.680148063163927 475.64693371145 0.590309177759788
501.889844026941 0.546862503670901 500.615916341723 0.493106449289737 501.889844026941 0.765568642728518 501.889844026941 0.661738455499144
526.60404112017 0.622710087249805 526.60404112017 0.557908268269771 526.60404112017 0.855407528132656 526.60404112017 0.726540274479179
552.592165898618 0.694139364989162 551.3182382134 0.619028165716849 551.3182382134 0.941564492003839 552.592165898618 0.791342093459213
577.561148528891 0.77293248579443 575.013293158455 0.686775521923249 576.287220843673 1.02772145587502 576.287220843673 0.848043685066744
601.001417936902 0.8517256065997 602.27534562212 0.751577340903283 601.001417936902 1.11756034127916 601.001417936902 0.905481660980865
626.989542715349 0.937882570470882 625.970400567175 0.819324697109683 625.970400567175 1.20666284237671 625.970400567175 0.952610256602708
651.958525345622 1.02403953434206 650.684597660404 0.88044459455676 650.684597660404 1.27882850442265 650.684597660404 0.991638624852047
676.672722438852 1.11019649821325 675.398794753634 0.930518727404969 675.398794753634 1.33626648033678 675.398794753634 1.02772145587502
700.367777383907 1.18898961901852 700.367777383907 0.973965401493856 701.386919532081 1.37529484858612 700.367777383907 1.03876722047389
726.355902162354 1.26410081829083 726.355902162354 1.02035761280911 726.355902162354 1.3937044562509 726.355902162354 1.04171275770026
753.617954626019 1.32890263727086 751.070099255583 1.05644044383208 751.070099255583 1.37161292705316 752.344026940801 1.02035761280911
776.039081885856 1.37161292705316 777.058224034031 1.0888413533221 776.039081885856 1.31785687267199 776.039081885856 0.995320546385004
800.753278979086 1.39664999347726 800.753278979086 1.10651457668029 799.479351293868 1.22139052850853 802.027206664304 0.95923771536203
0 0 826.741403757533 1.12786972157144 0 0 825.467476072315 0.912845504046778
0 0 850.436458702588 1.14627932923622 0 0 851.455600850762 0.876762673023804
1.3 计算结果
1.3.1 文献计算结果
1.3.2 本文计算结果
PbTe:I, 2.9e19
评论区